On group properties and reality conditions of UOSp(1|2) gauge transformations
Autor: | Ilyenko, Kostyantyn |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For osp(1|2;C) graded Lie algebra, which proper Lie subalgebra is su(2), we consider the Baker-Campbell-Hausdorff formula and formulate a reality condition for the Grassmann-odd transformation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su(2)-spinors clarifies the nature of Grassmann-odd transformation parameters and allow us an investigation of the corresponding infinitesimal gauge transformations. We also explore action of the corresponding group element of UOSp(1|2) on an appropriately graded representation space and find that the graded generalization of hermitian conjugation is compatible with the Dirac adjoint. Consistency of generalized (graded) unitary condition with the proposed reality condition is shown. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |