Sharp Estimates for the $\bar{\partial}$-Neumann Problem on Regular Coordinate Domains
Autor: | Catlin, David W., Cho, Jae-Seong |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper treats subelliptic estimates for the $\bar{\partial}$-Neumann problem on a class of domains known as regular coordinate domains. Our main result is that the largest subelliptic gain for a regular coordinate domain is bounded below by a purely algebraic number, the inverse of twice the multiplicity of the ideal associated to a given boundary point. Comment: 38 pages |
Databáze: | arXiv |
Externí odkaz: |