Lee-Yang Problems and The Geometry of Multivariate Polynomials
Autor: | Borcea, Julius, Brändén, Petter |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Lett. Math. Phys. 86 (2008), 53-61 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11005-008-0271-6 |
Popis: | We describe all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing in open circular domains. This completes the multivariate generalization of the classification program initiated by P\'olya-Schur for univariate real polynomials and provides a natural framework for dealing in a uniform way with Lee-Yang type problems in statistical mechanics, combinatorics, and geometric function theory. This is an announcement with some of the main results in arXiv:0809.0401 and arXiv:0809.3087. Comment: To appear in Letters in Mathematical Physics; 8 pages, no figures, LaTeX2e |
Databáze: | arXiv |
Externí odkaz: |