Hall-Higman type theorems for semisimple elements of finite classical groups
Autor: | Tiep, Pham Huu, Zalesskii, Alexander E. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove an analogue of the celebrated Hall-Higman theorem, which gives a lower bound for the degree of the minimal polynomial of any semisimple element of prime power order $p^{a}$ of a finite classical group in any nontrivial irreducible cross characteristic representation. With a few explicit exceptions, this degree is at least $p^{a-1}(p-1)$. Comment: 57 pages. Proc. London Math. Soc., to appear |
Databáze: | arXiv |
Externí odkaz: |