Autor: |
de Jong, A. J., He, Xuhua, Starr, Jason Michael |
Rok vydání: |
2008 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Under suitable hypotheses, we prove that a form of a projective homogeneous variety $G/P$ defined over the function field of a surface over an algebraically closed field has a rational point. The method uses an algebro-geometric analogue of simple connectedness replacing the unit interval by the projective line. As a consequence, we complete the proof of Serre's Conjecture II in Galois cohomology for function fields over an algebraically closed field. |
Databáze: |
arXiv |
Externí odkaz: |
|