Structure of characteristic Lyapunov vectors in spatiotemporal chaos
Autor: | Pazó, Diego, Szendro, Ivan G., López, Juan M., Rodríguez, Miguel A. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Phys. Rev. E 78, 016209 (2008) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.78.016209 |
Popis: | We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz `96 model exhibit the same features in quantitative and qualitative terms. Additionally we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work supports the claims about universality of our earlier results [I. G. Szendro et al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |