Complex vector fields and hypoelliptic partial differential operators
Autor: | Altomani, Andrea, Hill, C. Denson, Nacinovich, Mauro, Porten, Egmont |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, 987-1034 |
Druh dokumentu: | Working Paper |
Popis: | We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for $CR$ manifolds and H\"ormander's bracket condition for real vector fields. Applications are given to prove the hypoellipticity of first order systems and second order partial differential operators. Finally we describe a class of compact homogeneous CR manifolds for which the distribution of $(0,1)$ vector fields satisfies a subelliptic estimate. v2: minor revision, to appear in Ann. Inst. Fourier Comment: 39 pages |
Databáze: | arXiv |
Externí odkaz: |