Recognition of generalized network matrices
Autor: | Musitelli, A. |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this PhD thesis, we deal with binet matrices, an extension of network matrices. The main result of this thesis is the following. A rational matrix A of size n times m can be tested for being binet in time O(n^6 m). If A is binet, our algorithm outputs a nonsingular matrix B and a matrix N such that [B N] is the node-edge incidence matrix of a bidirected graph (of full row rank) and A=B^{-1} N. Furthermore, we provide some results about Camion bases. For a matrix M of size n times m', we present a new characterization of Camion bases of M, whenever M is the node-edge incidence matrix of a connected digraph (with one row removed). Then, a general characterization of Camion bases as well as a recognition procedure which runs in O(n^2m') are given. An algorithm which finds a Camion basis is also presented. For totally unimodular matrices, it is proven to run in time O((nm)^2) where m=m'-n. The last result concerns specific network matrices. We give a characterization of nonnegative {r,s}-noncorelated network matrices, where r and s are two given row indexes. It also results a polynomial recognition algorithm for these matrices. Comment: 183 pages |
Databáze: | arXiv |
Externí odkaz: |