Dynamical phase transitions in long-range Hamiltonian systems and Tsallis distributions with a time-dependent index

Autor: Campa, Alessandro, Chavanis, Pierre-Henri, Giansanti, Andrea, Morelli, Gianluca
Rok vydání: 2008
Předmět:
Zdroj: Phys. Rev. E 78, 040102(R) (2008)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevE.78.040102
Popis: We study dynamical phase transitions in systems with long-range interactions, using the Hamiltonian Mean Field (HMF) model as a simple example. These systems generically undergo a violent relaxation to a quasi-stationary state (QSS) before relaxing towards Boltzmann equilibrium. In the collisional regime, the out-of-equilibrium one-particle distribution function (DF) is a quasi-stationary solution of the Vlasov equation, slowly evolving in time due to finite $N$ effects. For subcritical energies $7/12Comment: 5 pages, 3 figures, few stylistic changes from previous version
Databáze: arXiv