Autor: |
Fu, Xiaoyong, Jiang, Zhenglu |
Rok vydání: |
2008 |
Předmět: |
|
Zdroj: |
Chinese Journal of Contemporary Mathematics, Vol 28, No 1, 2007, p69-76 |
Druh dokumentu: |
Working Paper |
Popis: |
This paper constructs a class of complete K\"{a}hler metrics of positive holomorphic sectional curvature on ${\bf C}^n$ and finds that the constructed metrics satisfy the following properties: As the geodesic distance $\rho\to\infty,$ the volume of geodesic balls grows like $O(\rho^{\frac{2(\beta+1)n}{\beta+2}})$ and the Riemannian scalar curvature decays like $O(\rho^{-\frac{2(\beta+1)}{\beta+2}}),$ where $\beta\geq 0.$ |
Databáze: |
arXiv |
Externí odkaz: |
|