Extracting Programs from Constructive HOL Proofs via IZF Set-Theoretic Semantics
Autor: | Constable, Robert, Moczydlowski, Wojciech |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Logical Methods in Computer Science, Volume 4, Issue 3 (September 9, 2008) lmcs:1140 |
Druh dokumentu: | Working Paper |
DOI: | 10.2168/LMCS-4(3:5)2008 |
Popis: | Church's Higher Order Logic is a basis for influential proof assistants -- HOL and PVS. Church's logic has a simple set-theoretic semantics, making it trustworthy and extensible. We factor HOL into a constructive core plus axioms of excluded middle and choice. We similarly factor standard set theory, ZFC, into a constructive core, IZF, and axioms of excluded middle and choice. Then we provide the standard set-theoretic semantics in such a way that the constructive core of HOL is mapped into IZF. We use the disjunction, numerical existence and term existence properties of IZF to provide a program extraction capability from proofs in the constructive core. We can implement the disjunction and numerical existence properties in two different ways: one using Rathjen's realizability for IZF and the other using a new direct weak normalization result for IZF by Moczydlowski. The latter can also be used for the term existence property. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |