Spatial and observational homogeneities of the galaxy distribution in standard cosmologies

Autor: Lemos, L. J. Rangel, Ribeiro, Marcelo B.
Rok vydání: 2008
Předmět:
Zdroj: Astron.Astrophys. 488 (2008) 55-66
Druh dokumentu: Working Paper
DOI: 10.1051/0004-6361:20077978
Popis: This work discusses the possible empirical verification of the geometrical concept of homogeneity of the standard relativistic cosmology considering its various definitions of distance. We study the physical consequences of the distinction between the usual concept of spatial homogeneity (SH), as defined by the Cosmological Principle, and the concept of observational homogeneity (OH), arguing that OH is in principle falsifiable by means of astronomical observations, whereas verifying SH is only possible indirectly. Simulated counts of cosmological sources are produced by means of a generalized number-distance expression that can be specialized to produce either the counts of the Einstein-de Sitter (EdS) cosmology, which has SH by construction, or other types of counts, which do, or do not, have OH by construction. Expressions for observational volumes and differential densities are derived with the various cosmological distance definitions in the EdS model. Simulated counts that have OH by construction do not always exhibit SH features. The reverse situation is also true. Besides, simulated counts with no OH features at low redshift start showing OH characteristics at high redshift. The comoving distance seems to be the only distance definition where both SH and OH appear simultaneously. The results show that observations indicating possible lack of OH do not necessarily falsify the standard Friedmannian cosmology, meaning that this cosmology will not necessarily always produce observable homogeneous densities. The general conclusion is that the use of different cosmological distances in the characterization of the galaxy distribution lead to significant ambiguities in reaching conclusions about the behavior of the large-scale galaxy distribution in the Universe.
Comment: 12 pages, 12 figures, LaTeX. Matches the final version sent to the journal. Accepted for publication in "Astronomy and Astrophysics"
Databáze: arXiv