Tight local approximation results for max-min linear programs
Autor: | Floréen, Patrik, Hassinen, Marja, Kaski, Petteri, Suomela, Jukka |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/978-3-540-92862-1_2 |
Popis: | In a bipartite max-min LP, we are given a bipartite graph $\myG = (V \cup I \cup K, E)$, where each agent $v \in V$ is adjacent to exactly one constraint $i \in I$ and exactly one objective $k \in K$. Each agent $v$ controls a variable $x_v$. For each $i \in I$ we have a nonnegative linear constraint on the variables of adjacent agents. For each $k \in K$ we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent $v$ must choose $x_v$ based on input within its constant-radius neighbourhood in $\myG$. We show that for every $\epsilon>0$ there exists a local algorithm achieving the approximation ratio ${\Delta_I (1 - 1/\Delta_K)} + \epsilon$. We also show that this result is the best possible -- no local algorithm can achieve the approximation ratio ${\Delta_I (1 - 1/\Delta_K)}$. Here $\Delta_I$ is the maximum degree of a vertex $i \in I$, and $\Delta_K$ is the maximum degree of a vertex $k \in K$. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms. Comment: 16 pages |
Databáze: | arXiv |
Externí odkaz: |