Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case

Autor: Boij, Mats, Soderberg, Jonas
Rok vydání: 2008
Předmět:
Druh dokumentu: Working Paper
Popis: We use the results by Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of the convexity of the simplicial fan spanned by the pure diagrams.
Comment: 14 pages
Databáze: arXiv