Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case
Autor: | Boij, Mats, Soderberg, Jonas |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We use the results by Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of the convexity of the simplicial fan spanned by the pure diagrams. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |