Autor: |
Alon, N, Fomin, F. V., Gutin, G., Krivelevich, M., Saurabh, S. |
Rok vydání: |
2008 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
The {\sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that - every strongly connected $n$-vertex digraph $D$ with minimum in-degree at least 3 has an out-branching with at least $(n/4)^{1/3}-1$ leaves; - if a strongly connected digraph $D$ does not contain an out-branching with $k$ leaves, then the pathwidth of its underlying graph UG($D$) is $O(k\log k)$. Moreover, if the digraph is acyclic, the pathwidth is at most $4k$. The last result implies that it can be decided in time $2^{O(k\log^2 k)}\cdot n^{O(1)}$ whether a strongly connected digraph on $n$ vertices has an out-branching with at least $k$ leaves. On acyclic digraphs the running time of our algorithm is $2^{O(k\log k)}\cdot n^{O(1)}$. |
Databáze: |
arXiv |
Externí odkaz: |
|