Singularities in Speckled Speckle

Autor: Freund, Isaac, Kessler, David A.
Rok vydání: 2007
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1364/OL.33.000479
Popis: Speckle patterns produced by random optical fields with two (or more) widely different correlation lengths exhibit speckle spots that are themselves highly speckled. Using computer simulations and analytic theory we present results for the point singularities of speckled speckle fields: optical vortices in scalar (one polarization component) fields; C points in vector (two polarization component) fields. In single correlation length fields both types of singularities tend to be more{}-or{}-less uniformly distributed. In contrast, the singularity structure of speckled speckle is anomalous: for some sets of source parameters vortices and C points tend to form widely separated giant clusters, for other parameter sets these singularities tend to form chains that surround large empty regions. The critical point statistics of speckled speckle is also anomalous. In scalar (vector) single correlation length fields phase (azimuthal) extrema are always outnumbered by vortices (C points). In contrast, in speckled speckle fields, phase extrema can outnumber vortices, and azimuthal extrema can outnumber C points, by factors that can easily exceed $10^{4}$ for experimentally realistic source parameters.
Databáze: arXiv