The Div-Curl Lemma Revisited
Autor: | Polisevski, Dan |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Div-Curl Lemma, which is the basic result of the compensated compactness theory in Sobolev spaces, was introduced by F. Murat (1978) with distinct proofs for the $L^2(\Omega)$ and $L^p(\Omega)$, $p \neq 2$, cases. In this note we present a slightly different proof, relying only on a Green-Gauss integral formula and on the usual Rellich-Kondrachov compactness properties. |
Databáze: | arXiv |
Externí odkaz: |