The Div-Curl Lemma Revisited

Autor: Polisevski, Dan
Rok vydání: 2007
Předmět:
Druh dokumentu: Working Paper
Popis: The Div-Curl Lemma, which is the basic result of the compensated compactness theory in Sobolev spaces, was introduced by F. Murat (1978) with distinct proofs for the $L^2(\Omega)$ and $L^p(\Omega)$, $p \neq 2$, cases. In this note we present a slightly different proof, relying only on a Green-Gauss integral formula and on the usual Rellich-Kondrachov compactness properties.
Databáze: arXiv