A Class of Soliton Solutions for the N=2 Super mKdV/Sinh-Gordon Hierarchy
Autor: | Aratyn, H., Gomes, J. F., Ymai, L. H., Zimerman, A. H. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | J.Phys.A41:312001,2008 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1751-8113/41/31/312001 |
Popis: | Employing the Hirota's method, a class of soliton solutions for the N=2 super mKdV equations is proposed in terms of a single Grassmann parameter. Such solutions are shown to satisfy two copies of N=1 supersymmetric mKdV equations connected by nontrivial algebraic identities. Using the super Miura transformation, we obtain solutions of the N=2 super KdV equations. These are shown to generalize solutions derived previously. By using the mKdV/sinh-Gordon hierarchy properties we generate the solutions of the N=2 super sinh-Gordon as well. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |