Existence of a multiplicative basis for a finitely spaced module over an aggregate
Autor: | Roiter, Andrej V., Sergeichuk, Vladimir V. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Ukrainian Math. J. 46 (no. 5) (1994) 567-579 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/BF01058522 |
Popis: | By [R. Bautista, P. Gabriel, A.V Roiter., L. Salmeron, Representation-finite algebras and multiplicative basis. Invent. Math. 81 (1985) 217-285.], a finite-dimensional algebra having finitely many isoclasses of indecomposable representations admits a multiplicative basis. In Sections 4.10-4.12 of [P. Gabriel, A. V. Roiter, Representations of finite-dimensional algebras. Encyclopaedia of Math. Sci., vol. 73, Algebra 8, Springer-Verlag, 1992] an analogous hypothesis was formulated for finitely spaced modules over an aggregate. We prove this conjecture. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |