Destruction of Anderson localization by a weak nonlinearity

Autor: Pikovsky, A. S., Shepelyansky, D. L.
Rok vydání: 2007
Předmět:
Zdroj: Phys. Rev. Lett. v.100, p.094101 (2008)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevLett.100.094101
Popis: We study numerically a spreading of an initially localized wave packet in a one-dimensional discrete nonlinear Schr\"odinger lattice with disorder. We demonstrate that above a certain critical strength of nonlinearity the Anderson localization is destroyed and an unlimited subdiffusive spreading of the field along the lattice occurs. The second moment grows with time $ \propto t^\alpha$, with the exponent $\alpha$ being in the range $0.3 - 0.4$. For small nonlinearities the distribution remains localized in a way similar to the linear case.
Comment: 4 pages, 5 figs
Databáze: arXiv