Destruction of Anderson localization by a weak nonlinearity
Autor: | Pikovsky, A. S., Shepelyansky, D. L. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Phys. Rev. Lett. v.100, p.094101 (2008) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.100.094101 |
Popis: | We study numerically a spreading of an initially localized wave packet in a one-dimensional discrete nonlinear Schr\"odinger lattice with disorder. We demonstrate that above a certain critical strength of nonlinearity the Anderson localization is destroyed and an unlimited subdiffusive spreading of the field along the lattice occurs. The second moment grows with time $ \propto t^\alpha$, with the exponent $\alpha$ being in the range $0.3 - 0.4$. For small nonlinearities the distribution remains localized in a way similar to the linear case. Comment: 4 pages, 5 figs |
Databáze: | arXiv |
Externí odkaz: |