The reddest ISO-2MASS quasar
Autor: | Leipski, C., Haas, M., Siebenmorgen, R., Meusinger, H., Albrecht, M., Cesarsky, C., Chini, R., Cutri, R., Drass, H., Huchra, J. P., Ott, S., Wilkes, B. J. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1051/0004-6361:20066323 |
Popis: | In the course of the NIR/MIR AGN search combining the 6.7 mu ISOCAM Parallel Survey and 2MASS we have discovered 24 type-1 quasars about a third of which are too red to be discriminated by optical/UV search techniques. Here we report on a detailed case study of the reddest type-1 quasar of our sample (J2341) at redshift z=0.236 with M_K=-25.8 and J-K=1.95. We performed spectroscopy in the optical with VLT/FORS1 and in the MIR with Spitzer as well as NIR imaging with ISPI at CTIO. The optical and NIR observations reveal a star forming emission-line galaxy at the same redshift as the quasar with a projected linear separation of 1.8 arcsec (6.7 kpc). The quasar and its companion are embedded in diffuse extended continuum emission. Compared with its companion the quasar exhibits redder optical-NIR colours, which we attribute to hot nuclear dust. The MIR spectrum shows only few emission lines superimposed on a power-law spectral energy distribution. However, the lack of strong FIR emission suggests that our potentially interacting object contains much less gas and dust and is in a stage different from dust reddened ULIRG-AGN like Mrk 231. The optical spectrum shows signatures for reddening in the emission-lines and no post-starburst stellar population is detected in the host galaxy of the quasar. The optical continuum emission of the active nucleus appears absorbed and diluted. Even the combination of absorption and host dilution is not able to match J2341 with standard quasar templates. While the BLR shows only a rather moderate absorption of E_(B-V)=0.3, the continuum shorter than 4500 AA requires strong obscuration with E_(B-V)=0.7, exceeding the constraints from the low upper limit on the 9.7 mu silicate absorption. This leads us to conclude that the continuum of J2341 is intrinsically redder than that of typical quasars. Comment: 8 pages, 9 figures |
Databáze: | arXiv |
Externí odkaz: |