Twisted conjugacy classes in Symplectic groups, Mapping class groups and Braid groups(including an Appendix written with Francois Dahmani)
Autor: | Fel'shtyn, Alexander, Gonçalves, Daciberg L. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that the symplectic group $Sp(2n,\mathbb Z)$ and the mapping class group $Mod_{S}$ of a compact surface $S$ satisfy the $R_{\infty}$ property. We also show that $B_n(S)$, the full braid group on $n$-strings of a surface $S$, satisfies the $R_{\infty}$ property in the cases where $S$ is either the compact disk $D$, or the sphere $S^2$. This means that for any automorphism $\phi$ of $G$, where $G$ is one of the above groups, the number of twisted $\phi$-conjugacy classes is infinite. Comment: 21 pages, with Appendix |
Databáze: | arXiv |
Externí odkaz: |