Twisting gauged non-linear sigma-models

Autor: Baptista, J. M.
Rok vydání: 2007
Předmět:
Zdroj: JHEP 0802:096,2008
Druh dokumentu: Working Paper
DOI: 10.1088/1126-6708/2008/02/096
Popis: We consider gauged sigma-models from a Riemann surface into a Kaehler and hamiltonian G-manifold X. The supersymmetric N=2 theory can always be twisted to produce a gauged A-model. This model localizes to the moduli space of solutions of the vortex equations and computes the Hamiltonian Gromov-Witten invariants. When the target is equivariantly Calabi-Yau, i.e. when its first G-equivariant Chern class vanishes, the supersymmetric theory can also be twisted into a gauged B-model. This model localizes to the Kaehler quotient X//G.
Comment: 33 pages; v2: small additions, published version
Databáze: arXiv