Twisting gauged non-linear sigma-models
Autor: | Baptista, J. M. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | JHEP 0802:096,2008 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1126-6708/2008/02/096 |
Popis: | We consider gauged sigma-models from a Riemann surface into a Kaehler and hamiltonian G-manifold X. The supersymmetric N=2 theory can always be twisted to produce a gauged A-model. This model localizes to the moduli space of solutions of the vortex equations and computes the Hamiltonian Gromov-Witten invariants. When the target is equivariantly Calabi-Yau, i.e. when its first G-equivariant Chern class vanishes, the supersymmetric theory can also be twisted into a gauged B-model. This model localizes to the Kaehler quotient X//G. Comment: 33 pages; v2: small additions, published version |
Databáze: | arXiv |
Externí odkaz: |