Dependence of ground state energy of classical n-vector spins on n
Autor: | Chandra, Samarth |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.77.021125 |
Popis: | We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - \sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show that this bound is the best possible. We also derive an upper bound for E_G(m) in terms of E_G(n), for m Comment: 6 pages, 2 figures, submitted to Physical Review E |
Databáze: | arXiv |
Externí odkaz: |