The Quantum de Laval Nozzle: stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow

Autor: Jain, P., Bradley, A. S., Gardiner, C. W.
Rok vydání: 2007
Předmět:
Zdroj: Phys. Rev. A 76, 023617 (2007)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevA.76.023617
Popis: We study an experimentally realizable system containing stable black hole-white hole acoustic horizons in toroidally trapped Bose-Einstein condensates - the quantum de Laval nozzle. We numerically obtain stationary flow configurations and assess their stability using Bogoliubov theory, finding both in hydrodynamic and non-hydrodynamic regimes there exist dynamically unstable regions associated with the creation of positive and negative energy quasiparticle pairs in analogy with the gravitational Hawking effect. The dynamical instability takes the form of a two mode squeezing interaction between resonant pairs of Bogoliubov modes. We study the evolution of dynamically unstable flows using the truncated Wigner method, which confirms the two mode squeezed state picture of the analogue Hawking effect for low winding number.
Comment: 12 pages, 10 figures
Databáze: arXiv