Algebraic K-theory of hyperbolic 3-simplex reflection groups
Autor: | Lafont, J. -F., Ortiz, I. J. |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Comment. Math. Helv. 84 (2009), pgs. 297-337 |
Druh dokumentu: | Working Paper |
Popis: | A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in the isometry group of hyperbolic 3-space, with fundamental domain a geodesic simplex (possibly with some ideal vertices). The classification of these groups is known, and there are exactly 9 cocompact examples, and 23 non-cocompact examples. We provide a complete computation of the lower algebraic K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups. Comment: 33 pages, 2 figures, 7 tables |
Databáze: | arXiv |
Externí odkaz: |