Algebraic K-theory of hyperbolic 3-simplex reflection groups

Autor: Lafont, J. -F., Ortiz, I. J.
Rok vydání: 2007
Předmět:
Zdroj: Comment. Math. Helv. 84 (2009), pgs. 297-337
Druh dokumentu: Working Paper
Popis: A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in the isometry group of hyperbolic 3-space, with fundamental domain a geodesic simplex (possibly with some ideal vertices). The classification of these groups is known, and there are exactly 9 cocompact examples, and 23 non-cocompact examples. We provide a complete computation of the lower algebraic K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.
Comment: 33 pages, 2 figures, 7 tables
Databáze: arXiv