Uyarlamalı Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi ve Yapay Sinir Ağları ile Türkiye’deki COVID-19 Vefat Sayısının Tahmin Edilmesi
Autor: | TURAN, Tülay, TURAN, Gökhan, KÖSE, Utku |
---|---|
Jazyk: | turečtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Volume: 15, Issue: 2 97-105 Bilişim Teknolojileri Dergisi |
ISSN: | 1307-9697 2147-0715 |
Popis: | COVID-19, küresel pandemi olarak ilan edilmiş, kritik ve ölümcül bir hastalıktır. Küresel salgın tehlikesinin sürmekte olduğu bu süreçte, pandemi ile yüzleşmek için özel politikalar ve planlar yapmak oldukça önemlidir. COVID-19 doğrulanmış verilerini kullanarak, yapay zeka teknikleri ile tahminlerde bulunmak ise gelecek planlarının geliştirilmesine yardımcı olduğu için önemli bir konudur. Bu çalışmada, Türkiye Sağlık Bakanlığı COVID-19 bilgilendirme sayfasında yayınlanan veriler kullanılarak, uyarlamalı ağ tabanlı bulanık mantık çıkarım sistemi (ANFIS) ve yapay sinir ağları (YSA) ile tahmin modelleri geliştirilmiştir. Bu modeller farklı istatistiksel değerlendirme kriterleri kullanılarak karşılaştırılmıştır. Değerlendirme sonucunda ANFIS modeli0.0247 ortalama mutlak hata (MAE) değeri, 0.0012 ortalama kare hata (MSE) değeri, 0.0351 kök ortalama kare hata (RMSE) değeri ve 0.9847 regresyon katsayısı R2 sonucu ile en iyi model sonucunu elde etmiştir. Ayrıca ANFIS ile oluşturulan modelin gelecek beş günlük vefat sayılarını %96 doğruluk oranı ile tahmin ettiği görülmüştür. COVID-19 is a critical and fatal disease, which was declated as the global pandemic. In this process in which the global pandemic state is alive, it is too important to make specific policies and plans to face the pandemic. Using COVID-19 verified data and making predictions with artificial intelligence techniques is an important issue as it allows deriving of future plans. In this study, Turkey's Health Ministry COVID-19 in the informational pages published using data, adaptive neuro-fuzzy inference system (ANFIS), and the artificial neural network (ANN) prediction models have been developed. These models were compared using different statistical evaluation criteria. As a result of the evaluation, the ANFIS model obtained the best model results with 0.0247 mean absolute error (MAE) value, 0.0012 mean square error (MSE) value, 0.0351 root mean square error (RMSE) value and 0.9847 regression coefficient R2. In addition, it was seen that the model created with ANFIS showed a better performance and predicted the number of deaths in the next five days with an accuracy rate of 96%. |
Databáze: | OpenAIRE |
Externí odkaz: |