On the Metabelian Local Artin Map I: Galois Conjugation Law
Autor: | İKEDA, Kazım İlhan |
---|---|
Jazyk: | turečtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Volume: 24, Issue: 1 25-58 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | It is proved that, for a (henselian) local field K and for a fixed Lubin-Tate splitting f over K, the metabelian local Artin map (?, K)f: B(K, f) \tilde{\rightarrow} Gal (K(ab)2 / K) satisfies the Galois conjugation law (\tilde{s}+(a), s (K))\tilde{s}f\tilde{s}-1 = \tilde{s}|K(ab)2 (a, K)f\tilde{s}-1|\tilde{s}(K(ab)2) for any a \in B(K, f), and for any embedding s : K \hookrightarrow Ksep, where \tilde{s} \in Aut (Ksep) is a fixed extension to Ksep of the embedding s : K \hookrightarrow Ksep. |
Databáze: | OpenAIRE |
Externí odkaz: |