Pseudo-Riemannian Submanifolds of Minkowski Space with Generalized 1-Type Gauss Map
Autor: | BEKTAŞ DEMİRCİ, Burcu |
---|---|
Jazyk: | turečtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Volume: 22, Issue: 3 536-551 Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi |
ISSN: | 2149-3367 |
Popis: | Bu makalede, genelleştirilmiş 1-tipinden Gauss tasvirine sahip Minkowski uzayındaki dönel yüzeyler ve regle alt manifoldları üzerine çalışılmıştır. İlk olarak, ikinci çeşit noktasal 1-tipinden Gauss tasviri ile genelleştirilmiş 1-tipinden Gauss tasviri kavramları arasındaki ilişki verilmiştir. Daha sonra, 3-boyutlu Minkowski uzayında sabit ortalama eğriliğe sahip tümden jeodezik olmayan herhangi bir yüzeyin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olamayacağı ispatlanmıştır. Diğer bölümde, E_1^3 uzayındaki bütün dönel yüzeylerin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olduğu gösterilmiştir. Ayrıca, genelleştirilmiş 1-tipinden Gauss tasvirine sahip dönel yüzeylerle ilgili bir örnek verilmiştir. Son bölümde ise, E_1^(m )Minkowski uzayındaki regle alt manifoldları üzerine çalışılmıştır ve genelleştirilmiş 1-tipinden Gauss tasvirine sahip silindirik regle alt manifoldları incelenmiştir. In this article, we study on rotational surfaces and regle submanifolds of the Minkowski space with generalized 1-type Gauss map. First of all, we give a relation between notions of pointwise 1-type Gauss map of the second kind and generalized 1-type Gauss map. Then, we prove that any non-totally geodesic surface in 3-dimensional Minkowski space with constant mean curvature does not have a generalized 1-type Gauss map. In other section, we show that all rotational surfaces in E_1^3 have generalized 1-type Gauss map. Furthermore, we give an example for the rotational surface having generalized 1-type Gauss map. In last section, we study the ruled submanifolds in the Minkowski space E_1^m and we examine the cylindrical ruled submanifolds having generalized 1-type Gauss map. |
Databáze: | OpenAIRE |
Externí odkaz: |