Напіваналітичний неявний метод інтегрування по часу одномірної газодинамічної задачі
Jazyk: | angličtina |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mechanics and Advanced Technologies; Том 7 № 1 (2023); 91-99 Mechanics and Advanced Technologies; Vol. 7 No. 1 (2023); 91-99 |
ISSN: | 2521-1943 2522-4255 |
Popis: | Sharp wave treatment for 1-D gas dynamic problem is still a chellenge for modern numerical methods. They often require too many space and time steps, produce spurious oscillation of solution, exhibit a strong numerical dissipation or divergence of results. This paper is further extension of authors’ idea of employment the analytical solution for space coordinate, where time step is a parameter which used in the space solution. Its peculiarity consists in development of additional procedure of linearization of dependence between the pressure and density. It is performed in premise that actual pressure for each space element is close to the basic pressure, attained at previous moment of time. The efficiency of method is tested on the very popular task of Sod, where two different ideal gases in a tube are separated by diaphragm, which is suddenly broken. The problem considered in Lagrangian coordinates formulation. The results obtained show the very good efficiency of method, which requires the essentially lesser time and space steps, leads to no spurious oscillation and give consistent and predictable results with respect to meshing. The accuracy of method is mostly controlled by time step, which should be larger than clearly stated theoretical lower limit. Other advantage of method is that it can calculate the process to any desired moment of time, and space meshing can be variable in time and space and can be easily adapted during the process of calculation. Задача чисельного розв’язку одновимірної газодинамічної задачі все ще є викликом для сучасних чисельних методів. Вони потребують застосування багатої кількості кроків по часу та простору, часто демонструють сильне чисельне розсіювання або розбіжність результатів. Ця стаття є подальшим розширенням ідеї авторів щодо використання аналітичного рішення для просторової координати, де часовий крок є параметром, який використовується в просторовому розв’язку. Його особливість полягає в розробці додаткової процедури лінеаризації залежності між тиском і густиною. В ній передбачається, що фактичний тиск для кожного елемента простору близький до базового тиску, досягнутого в попередній момент часу. Ефективність методу перевіряється на дуже популярній задачі Sod, де два різні ідеальні гази в трубці розділені діафрагмою, яка раптово руйнується. Задача розглядається в постановці координат Лагранжа. Отримані результати показують дуже хорошу ефективність методу, який вимагає істотно менших кроків часу та простору, не призводить до помилкових коливань і дає послідовні та передбачувані результати щодо впливу параметрів сітки. Точність методу в основному контролюється кроком у часі, який повинен бути більшим за чітко встановлену теоретичну нижню межу. Інша перевага методу полягає в тому, що він дозволяє обчислювати процес до будь-якого бажаного моменту часу, а просторова сітка може змінюватися в часі та просторі та може бути легко адаптована під час процесу обчислення. |
Databáze: | OpenAIRE |
Externí odkaz: |