Development of an algorithm to train artificial neural networks for intelligent decision support systems
Autor: | Sova, Oleg, Turinskyi, Oleksandr, Shyshatskyi, Andrii, Dudnyk, Volodymyr, Zhyvotovskyi, Ruslan, Prokopenko, Yevgen, Hurskyi, Taras, Hordiichuk, Valerii, Nikitenko, Anton, Remez, Artem |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
штучні нейронні мережі
синаптичні ваги функція належності обробка інформації інтелектуальні системи підтримки прийняття рішень artificial neural networks synaptic weights membership function information processing intelligent decision support systems Quantitative Biology::Neurons and Cognition Computer Science::Neural and Evolutionary Computation UDC 681.324.01 искусственные нейронные сети синаптические веса функция принадлежности обработка информации интеллектуальные системы поддержки принятия решений |
Zdroj: | Східно-Європейський журнал передових технологій; Том 1, № 9 (103) (2020): Інформаційно-керуючі системи; 46-55 Восточно-Европейский журнал передовых технологий; Том 1, № 9 (103) (2020): Информационно-управляющие системы; 46-55 Eastern-European Journal of Enterprise Technologies; Том 1, № 9 (103) (2020): Information and controlling system; 46-55 |
ISSN: | 1729-3774 1729-4061 |
Popis: | The algorithm to train artificial neural networks for intelligent decision support systems has been constructed. A distinctive feature of the proposed algorithm is that it conducts training not only for synaptic weights of an artificial neural network, but also for the type and parameters of membership function. In case of inability to ensure the assigned quality of functioning of artificial neural networks due to training of parameters of artificial neural network, the architecture of artificial neural networks is trained. The choice of the architecture, type and parameters of membership function occurs taking into consideration the computation resources of the facility and taking into consideration the type and the amount of information entering the input of an artificial neural network. In addition, when using the proposed algorithm, there is no accumulation of an error of artificial neural networks training as a result of processing the information entering the input of artificial neural networks.Development of the proposed algorithm was predetermined by the need to train artificial neural networks for intelligent decision support systems in order to process more information given the unambiguity of decisions being made. The research results revealed that the specified training algorithm provides on average 16–23 % higher the efficiency of training artificial neural networks training that is on average by 16–23 % higher and does not accumulate errors in the course of training. The specified algorithm will make it possible to conduct training of artificial neural networks; to determine effective measures to enhance the efficiency of functioning of artificial neural networks. The developed algorithm will also enable the improvement of the efficiency of functioning of artificial neural networks due to training the parameters and the architecture of artificial neural networks. The proposed algorithm reduces the use of computational resources of decision support systems. The application of the developed algorithm makes it possible to work out the measures aimed at improving the effectiveness of training artificial neural networks and to increase the efficiency of information processing Разработан алгоритм обучения искусственных нейронных сетей для интеллектуальных систем поддержки принятия решений. Отличительная особенность предлагаемого алгоритма заключается в том, что он проводит обучение не только синаптических весов искусственной нейронной сети, но и вида и параметров функции принадлежности. В случае невозможности обеспечить заданное качество функционирования искусственных нейронных сетей за счет обучения параметров искусственной нейронной сети происходит обучение архитектуры искусственных нейронных сетей. Выбор архитектуры, вида и параметров функции принадлежности происходит с учетом вычислительных ресурсов средства и с учетом типа и количества информации, поступающей на вход искусственной нейронной сети. Также при использовании предложенного алгоритма не происходит накопления ошибки обучения искусственных нейронных сетей в результате обработки информации, поступающей на вход искусственных нейронных сетей. Разработка предложенного алгоритма обусловлена необходимостью проведения обучения искусственных нейронных сетей для интеллектуальных систем поддержки принятия решений, с целью обработки большего количества информации, при однозначности решений, которые принимаются. По результатам исследования установлено, что указанный алгоритм обучения обеспечивает в среднем на 16–23 % больше высокую эффективность обучения искусственных нейронных сетей и не накапливает ошибок в ходе обучения. Указанный алгоритм позволит проводить обучение искусственных нейронных сетей; определить эффективные меры для повышения эффективности функционирования искусственных нейронных сетей. Также разработанный алгоритм позволит повысить эффективность функционирования искусственных нейронных сетей за счет обучения параметров и архитектуры искусственных нейронных сетей. Предложенный алгоритм уменьшает использование вычислительных ресурсов систем поддержки и принятия решений. Использование разработанного алгоритма позволит выработать меры, направленные на повышение эффективности обучения искусственных нейронных сетей, и повысить оперативность обработки информации Розроблено алгоритм навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень. Відмінна особливість запропонованого алгоритму полягає в тому, що він проводить навчання не тільки синаптичних ваг штучної нейронної мережі, але й виду та параметрів функції належності. В разі неможливості забезпечити задану якість функціонування штучних нейронних мереж за рахунок навчання параметрів штучної нейронної мережі відбувається навчання архітектури штучних нейронних мереж. Вибір архітектури, виду та параметрів функції належності відбувається з врахуванням обчислювальних ресурсів засобу та з врахуванням типу та кількості інформації, що надходить на вхід штучної нейронної мережі. Також при використанні запропонованого алгоритму не відбувається накопичення помилки навчання штучних нейронних мереж в результаті обробки інформації, що надходить на вхід штучних нейронних мереж. Розробка запропонованого алгоритму обумовлена необхідністю проведення навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень, з метою обробки більшої кількості інформації, при однозначності рішень, що приймаються. За результатами дослідження встановлено, що зазначений алгоритм навчання забезпечує в середньому на 16–23 % більшу високу ефективність навчання штучних нейронних мереж та не накопичує помилок в ході навчання. Зазначений алгоритм дозволить проводити навчання штучних нейронних мереж; визначити ефективні заходи для підвищення ефективності функціонування штучних нейронних мереж. Також розроблений алгоритм дозволить підвищити ефективність функціонування штучних нейронних мереж за рахунок навчання параметрів та архітектури штучних нейронних мереж. Запропонований алгоритм зменшує використання обчислювальних ресурсів систем підтримки та прийняття рішень. Використання розробленого алгоритму дозволить виробити заходи, що спрямовані на підвищення ефективності навчання штучних нейронних мереж, та підвищити оперативність обробки інформації |
Databáze: | OpenAIRE |
Externí odkaz: |