Autor: |
Childs, Lindsay N., Underwood, Robert G. |
Jazyk: |
angličtina |
Rok vydání: |
2004 |
Předmět: |
|
Zdroj: |
Illinois J. Math. 48, no. 3 (2004), 923-940 |
Popis: |
Let $p$ be a prime number, $K$ be a finite extension of the $p$-adic rational numbers containing a primitive $p^n$th root of unity, $R$ be the valuation ring of $K$ and $G$ be the cyclic group of order $p^n$. We define triangular Hopf orders over $R$ in $KG$, and show that there exist triangular Hopf orders with $n(n+1)/2$ parameters by showing that the linear duals of "sufficiently $p$-adic" formal group Hopf orders are triangular. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|