Autor: |
Menzala, G. Perla, De Cezaro, F. Travessini |
Jazyk: |
angličtina |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
Adv. Differential Equations 18, no. 11/12 (2013), 1073-1104 |
Popis: |
We consider a dynamical nonlinear model for shallow shells of the Marguerre--Vlasov's type in the presence of thermal effects. Results on existence and uniqueness of global weak solutions are already available. We consider the above model depending on a parameter $\varepsilon>0$ and study its weak limit as $\varepsilon\rightarrow 0^+$. The limit model turns out to be a nonlinear Timoshenko's equation with thermal effects on the manifold (the shell). We also analyze the asymptotic behavior of the total energy of the nonlinear model of Marguerre--Vlasov's type with thermal effects. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|