The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli
Autor: | Bettler, E., Samain, E., Chazalet, V., Bosso, C., Heyraud, A., Joziasse, Dh, Wakarchuk, Ww, Imberty, A., Geremia, Ar |
---|---|
Přispěvatelé: | Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Deleage, Gilbert |
Jazyk: | angličtina |
Rok vydání: | 1999 |
Předmět: |
Chromatography
Magnetic Resonance Spectroscopy Carbohydrate Sequence Molecular Sequence Data N-Acetyllactosamine Synthase [SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology Escherichia coli Oligosaccharides Amino Sugars [SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology Cloning Molecular |
Zdroj: | Glycoconj J Glycoconj J, 1999, 16, pp.205-212 |
Popis: | International audience; Scientific and commercial interest in oligosaccharides is increasing, but their availability is limited as production relies on chemical or chemo-enzymatic synthesis. In search for a more economical, alternative procedure, we have investigated the possibility of producing specific oligosaccharides in E. coli that express the appropriate glycosyltransferases. The Azorhizobium chitin pentaose synthase NodC (a beta(1,4)GlcNAc-oligosaccharide synthase), and the Neisseria beta(1,4)galactosyltransferase LgtB, were co-expressed in E. coli. The major oligosaccharide isolated from the recombinant strain, was subjected to LC-MS, FAB-MS and NMR analysis, and identified as betaGal(1,4)[betaGlcNAc(1,4)]4GlcNAc. High cell density culture yielded more than 1.0 gr of the hexasaccharide per liter of culture. The compound was found to be an acceptor in vitro for betaGal(1,4)GlcNAc alpha(1,3)galactosyltransferase, which suggests that the expression of additional glycosyltransferases in E. coli will allow the production of more complex oligosaccharides.Scientific and commercial interest in oligosaccharides is increasing, but their availability is limited as production relies on chemical or chemo-enzymatic synthesis. In search for a more economical, alternative procedure, we have investigated the possibility of producing specific oligosaccharides in E. coli that express the appropriate glycosyltransferases. The Azorhizobium chitin pentaose synthase NodC (a beta(1,4)GlcNAc-oligosaccharide synthase), and the Neisseria beta(1,4)galactosyltransferase LgtB, were co-expressed in E. coli. The major oligosaccharide isolated from the recombinant strain, was subjected to LC-MS, FAB-MS and NMR analysis, and identified as betaGal(1,4)[betaGlcNAc(1,4)]4GlcNAc. High cell density culture yielded more than 1.0 gr of the hexasaccharide per liter of culture. The compound was found to be an acceptor in vitro for betaGal(1,4)GlcNAc alpha(1,3)galactosyltransferase, which suggests that the expression of additional glycosyltransferases in E. coli will allow the production of more complex oligosaccharides. |
Databáze: | OpenAIRE |
Externí odkaz: |