A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling
Autor: | Köhler, Andrea, Demir, Ümmühan, Kickstein, Eva, Krauss, Sybille, Aigner, Johanna, Aranda-Orgillés, Beatriz, Karagiannidis, Antonios I, Achmüller, Clemens, Bu, Huajie, Wunderlich, Andrea, Schweiger, Michal-Ruth, Schaefer, Georg, Schweiger, Susann, Klocker, Helmut, Schneider, Rainer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Male
Translation Cancer Research Neoplasms Hormone-Dependent Ubiquitin-Protein Ligases genetics [Neoplasms Hormone-Dependent] genetics [Prostatic Neoplasms Castration-Resistant] biosynthesis [Transcription Factors] Phosphatidylinositol 3-Kinases Reciprocal regulation ddc:570 Cell Line Tumor pathology [Neoplasms Hormone-Dependent] metabolism [Androgens] biosynthesis [Microtubule Proteins] Humans genetics [Microtubule Proteins] Promoter Regions Genetic metabolism [Phosphatidylinositol 3-Kinases] Feedback Physiological Prostate cancer metabolism [Receptors Androgen] MID1 Research pathology [Prostatic Neoplasms Castration-Resistant] biosynthesis [Nuclear Proteins] Nuclear Proteins genetics [Nuclear Proteins] genetics [Transcription Factors] Gene Expression Regulation Neoplastic Androgen receptor Prostatic Neoplasms Castration-Resistant Oncology Receptors Androgen metabolism [Proto-Oncogene Proteins c-akt] Androgens Microtubule Proteins Molecular Medicine Proto-Oncogene Proteins c-akt Signal Transduction Transcription Factors Mid1 protein human |
Zdroj: | Molecular cancer 13(1), 146 (2014). doi:10.1186/1476-4598-13-146 Molecular Cancer |
DOI: | 10.1186/1476-4598-13-146 |
Popis: | Background High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR. Methods AR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively. Results The microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner. Conclusion Promotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer. |
Databáze: | OpenAIRE |
Externí odkaz: |