Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties

Autor: Badalato, N., Guillot, A., Sabarly, V., Dubois, M., Pourette, N., Pontoire, B., Souza, D.Z., Robert, P., Bridier, A., Monnet, V., Durand, S., Mazéas, L., Buléon, A., Bouchez, T., Mortha, G., Bize, A.
Přispěvatelé: Hydrosystèmes et Bioprocédés (UR HBAN), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Omics Services, Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Universidade do Minho, Laboratoire Génie des procédés papetiers (LGP2 ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Conseil Regional d'Ile-de-France through DIM R2DS programs [R2DS 2010-08], Shihui Yang, Hydrosystèmes et bioprocédés (UR HBAN), Laboratoire Génie des procédés papetiers (LGP2), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Metabolic Processes
Proteomics
Cell Physiology
[SDV.BIO]Life Sciences [q-bio]/Biotechnology
Proteome
Carbohydrates
lcsh:Medicine
Research and Analysis Methods
Microbiology
Biochemistry
Database and Informatics Methods
DECHET
Bacterial Proteins
Microbiologie
Tandem Mass Spectrometry
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

wastes
Life Science
Post-Translational Modification
lcsh:Science
Cellulose
Protein Interactions
Protein Metabolism
Clostridium
WIMEK
Xylose
[SDE.IE]Environmental Sciences/Environmental Engineering
Organic Compounds
Proteomic Databases
lcsh:R
Organic Chemistry
Monosaccharides
Chemical Compounds
Biology and Life Sciences
Proteins
Cell Biology
[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
Cell Metabolism
Chemistry
Metabolism
Biological Databases
METABOLISME
Fermentation
Physical Sciences
lcsh:Q
Signal Peptides
Subcellular Fractions
Research Article
Zdroj: PLoS ONE
PLoS ONE, Public Library of Science, 2017, 12 (1), pp.e0170524. ⟨10.1371/journal.pone.0170524⟩
PLoS ONE, Vol 12, Iss 1, p e0170524 (2017)
PLoS ONE, 12(1)
PLoS ONE 12 (2017) 1
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0170524⟩
Popis: International audience; Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery.To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the ªxyl-docº cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics.
Databáze: OpenAIRE