Efficient estimation of personalized biventricular mechanical function employing gradient‐based optimization

Autor: Finsberg, Henrik, Xi, Ce, Tan, Ju Le, Zhong, Liang, Genet, Martin, Sundnes, Joakim, Lee, Lik Chuan, Wall, Samuel T.
Přispěvatelé: University of Oslo (UiO), Michigan State University [East Lansing], Michigan State University System, National Heart Centre Singapore (NHCS), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Norwegian University of Life Sciences (NMBU), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2018, 34 (7), pp.e2982. ⟨10.1002/cnm.2982⟩
International Journal for Numerical Methods in Biomedical Engineering, 2018, 34 (7), pp.e2982. ⟨10.1002/cnm.2982⟩
ISSN: 2040-7947
2040-7939
DOI: 10.1002/cnm.2982⟩
Popis: International audience; Individually personalized computational models of heart mechanics can be used to estimate important physiological and clinically-relevant quantities that are difficult, if not impossible, to directly measure in the beating heart. Here, we present a novel and efficient framework for creating patient-specific biventricular models using a gradient-based data assimilation method for evaluating regional myocardial contractility and estimating myofiber stress. These simulations can be performed on a regular laptop in less than 2 h and produce excellent fit between measured and simulated volume and strain data through the entire cardiac cycle. By applying the framework using data obtained from 3 healthy human biventricles, we extracted clinically important quantities as well as explored the role of fiber angles on heart function. Our results show that steep fiber angles at the endocardium and epicardium are required to produce simulated motion compatible with measured strain and volume data. We also find that the contraction and subsequent systolic stresses in the right ventricle are significantly lower than that in the left ventricle. Variability of the estimated quantities with respect to both patient data and modeling choices are also found to be low. Because of its high efficiency, this framework may be applicable to modeling of patient specific cardiac mechanics for diagnostic purposes.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje