Spatio-temporal dynamic of malaria in Ouagadougou, Burkina Faso, 2011–2015
Autor: | Ouedraogo, Boukary, Inoue, Yasuko, Kambiré, Alinsa, Sallah, Kankoe, Dieng, Sokhna, Tine, Raphael, Rouamba, Toussaint, Herbreteau, Vincent, Sawadogo, Yacouba, Ouedraogo, Landaogo S. L. W., Yaka, Pascal, Ouedraogo, Ernest K., Dufour, Jean-Charles, Gaudart, Jean |
---|---|
Přispěvatelé: | Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Embassy of Japan in the Republic of Guinea, Prospective et Coopération, Laboratoire d’Idées, Bureau d’Etudes Recherche, École des Hautes Études en Santé Publique [EHESP] (EHESP), Ecole de Santé Publique - Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Université libre de Bruxelles (ULB), IRSS ‐ Clinical Research Unit of Nanoro (IRSS‐CRUN), UMR 228 Espace-Dev, Espace pour le développement, Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA), Programme National de Lutte contre le Paludisme, Ministère de la Santé [Burkina Faso], Direction Régionale de la Santé du Centre, Direction Générale de la Météorologie [Ouagadougou, Burkina Faso], This work was carried out thanks to the support of the A*MIDEX Grant (n°ANR- 11-IDEX-0001-02) funded by the French Government Investissements d’Avenir programme). This work was also supported by OpenHealth Institut, the French NGO Prospective & Cooperation and by the AMMA Consortium (African Monsoon Multidisciplinary Analyses). None of the 3 funding organizations influenced the design, analysis or interpretation of the work., ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Direction générale de la météorologie du Burkina Faso, Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), Herbreteau, Vincent, INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE - - Amidex2011 - ANR-11-IDEX-0001 - IDEX - VALID |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Parasitologie
lcsh:Arctic medicine. Tropical medicine Spatio-temporal dynamic Spatial clusters lcsh:RC955-962 Research Incidence [SDE.ES]Environmental Sciences/Environmental and Society lcsh:Infectious and parasitic diseases Malaria OUAGADOUGOU Spatio-Temporal Analysis [SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie parasitic diseases Humans lcsh:RC109-216 Hotspots [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie [SDE.ES] Environmental Sciences/Environmental and Society BURKINA FASO Pathologie maladies infectieuses Weather |
Zdroj: | Malaria Journal Malaria Journal, 2018, 17 (1), pp.138. ⟨10.1186/s12936-018-2280-y⟩ Malaria Journal, BioMed Central, 2018, 17 (1), pp.138. ⟨10.1186/s12936-018-2280-y⟩ Malaria journal, 17 (1 Malaria Journal, Vol 17, Iss 1, Pp 1-12 (2018) |
ISSN: | 1475-2875 |
DOI: | 10.1186/s12936-018-2280-y⟩ |
Popis: | Background: Given the scarcity of resources in developing countries, malaria treatment requires new strategies that target specific populations, time periods and geographical areas. While the spatial pattern of malaria transmission is known to vary depending on local conditions, its temporal evolution has yet to be evaluated. The aim of this study was to determine the spatio-temporal dynamic of malaria in the central region of Burkina Faso, taking into account meteorological factors. Methods: Drawing on national databases, 101 health areas were studied from 2011 to 2015, together with weekly meteorological data (temperature, number of rain events, rainfall, humidity, wind speed). Meteorological factors were investigated using a principal component analysis (PCA) to reduce dimensions and avoid collinearities. The Box-Jenkins ARIMA model was used to test the stationarity of the time series. The impact of meteorological factors on malaria incidence was measured with a general additive model. A change-point analysis was performed to detect malaria transmission periods. For each transmission period, malaria incidence was mapped and hotspots were identified using spatial cluster detection. Results: Malaria incidence never went below 13.7 cases/10,000 person-weeks. The first and second PCA components (constituted by rain/humidity and temperatures, respectively) were correlated with malaria incidence with a lag of 2 weeks. The impact of temperature was significantly non-linear: malaria incidence increased with temperature but declined sharply with high temperature. A significant positive linear trend was found for the entire time period. Three transmission periods were detected: low (16.8-29.9 cases/10,000 person-weeks), high (51.7-84.8 cases/10,000 person-weeks), and intermediate (26.7-32.2 cases/10,000 person-weeks). The location of clusters identified as high risk varied little across transmission periods. Conclusion: This study highlighted the spatial variability and relative temporal stability of malaria incidence around the capital Ouagadougou, in the central region of Burkina Faso. Despite increasing efforts in fighting the disease, malaria incidence remained high and increased over the period of study. Hotspots, particularly those detected for low transmission periods, should be investigated further to uncover the local environmental and behavioural factors of transmission, and hence to allow for the development of better targeted control strategies. SCOPUS: ar.j info:eu-repo/semantics/published |
Databáze: | OpenAIRE |
Externí odkaz: |