Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting

Autor: Heather, Flanagan-Steet, Megan, Aarnio, Brian, Kwan, Pierre, Guihard, Aaron, Petrey, Mark, Haskins, Frederic, Blanchard, Richard, Steet
Přispěvatelé: Complex Carbohydrate Research Center [Athens, GA, USA], University of Georgia [USA], Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut National de la Recherche Agronomique (INRA)-Université de Nantes (UN), Departments of Pathology and Clinical Studies [Philadelphia, PA, USA], University of Pennsylvania School of Veterinary Medicine, This work was supported by grants from NIGMS (GM-086524 and P40 OD101939) and the National ISMRD/MPS Society., maurice, sandrine, Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Journal of Bone and Mineral Research
Journal of Bone and Mineral Research, American Society for Bone and Mineral Research, 2016, 31 (3), pp.535-548. ⟨10.1002/jbmr.2722⟩
ISSN: 0884-0431
1523-4681
DOI: 10.1002/jbmr.2722⟩
Popis: International audience; Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation.
Databáze: OpenAIRE