Popis: |
Coated pits will assemble onto purified plasma membranes that are attached to a poly-L-lysine coated substratum (Moore, M. S., Mahaffey, D. T., Brodsky, F. M., and Anderson, R. G. W. (1987) Science 236, 558-563; Mahaffey, D. T., Moore, M. S., Brodsky, F. M., and Anderson, R. G. W. (1989) J. Cell Biol. 108, 1615-1624). To better understand the assembly reaction, we have purified both clathrin triskelion and AP-2 subunits from bovine brain and assayed for their ability to bind to the cytoplasmic surface of attached membranes. Two types of membranes were analyzed: those washed with a high pH buffer that selectively removes triskelions and those washed with a high salt buffer that removes both the AP-2 and the triskelion subunits. We found that purified AP-2 subunits bind with high affinity (Kd approximately 3 x 10(-8) M) to salt stripped membranes. Binding is saturable and abolished by treating membranes with less than 20 micrograms/ml of elastase. When membranes were treated with elastase before the salt wash and then salt washed and assayed for AP-2 binding, normal binding was seen, which indicates that the presence of clathrin-coated pits protects the binding site from the protease. Membranes that had rebound AP-2 did not bind purified triskelions, even though high pH buffer-washed membranes that bear endogenous AP-2 bound triskelions with high affinity (Kd approximately 3 x 10(-9) M) and supported lattice assembly. We conclude that coated pit assembly is initiated by the binding of AP-2 to an integral membrane protein but that the AP-2 complex must be activated by an unknown process before the coated pit lattice will assemble. |