Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism
Autor: | Ahmed, Haouz, Veerle, Vanheusden, Hélène, Munier-Lehmann, Mattheus, Froeyen, Piet, Herdewijn, Serge, Van Calenbergh, Marc, Delarue |
---|---|
Přispěvatelé: | Biochimie Structurale, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Medicinal Chemistry-FWW, Universiteit Gent = Ghent University (UGENT), Chimie Structurale des Macromolécules (CSM), Laboratory of Medicinal Chemistry, Rega Institute-Catholic University of Leuven, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Universiteit Gent = Ghent University [Belgium] (UGENT), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2003 |
Předmět: |
macromolecular structures
MESH: Mycobacterium tuberculosis Protein Conformation electron-density maps type-1 thymidine kinase azt activation crystal-structure MESH: Catalytic Domain Mycobacterium tuberculosis MESH: Drug Design adenylate kinase ump/cmp-kinase Structure-Activity Relationship MESH: Protein Conformation MESH: Structure-Activity Relationship MESH: Enzyme Inhibitors Catalytic Domain Drug Design angstrom resolution Enzyme Inhibitors Nucleoside-Phosphate Kinase MESH: Nucleoside-Phosphate Kinase simplex virus type-1 x-ray crystallography |
Zdroj: | Journal of Biological Chemistry Journal of Biological Chemistry, 2003, 278 (7), pp.4963-71. ⟨10.1074/jbc.M209630200⟩ Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2003, 278 (7), pp.4963-71. ⟨10.1074/jbc.M209630200⟩ |
ISSN: | 0021-9258 1083-351X |
Popis: | The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excluding the TMP-bound Mg2+ ion. The crystallographic structure of the complex of one of the compounds, 5-CH2OH-dUMP, with TMPK has been determined at 2.0 Angstrom. It reveals a major conformation for the hydroxyl group in contact with a water molecule and a minor conformation pointing toward Ser(99). Looking for a role for Ser(99), we have identified an unusual catalytic triad, or a proton wire, made of strictly conserved residues (including Glu(6), Ser(99), Arg, and Asp(9)) that probably serves to protonate the transferred PO3 group. The crystallographic structure of the commercially available bisubstrate analogue P-1-(adenosine-5')-P-5-(thymidine-5')-pentaphosphate bound to TMPK is also reported at 2.45 Angstrom and reveals an alternative binding pocket for the adenine moiety of the molecule compared with what is observed either in the Escherichia coli or in the yeast enzyme structures. This alternative binding pocket opens a way for the design of a new family of specific inhibitors. ispartof: Journal of Biological Chemistry vol:278 issue:7 pages:4963-4971 ispartof: location:United States status: published |
Databáze: | OpenAIRE |
Externí odkaz: |