Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism

Autor: Ahmed, Haouz, Veerle, Vanheusden, Hélène, Munier-Lehmann, Mattheus, Froeyen, Piet, Herdewijn, Serge, Van Calenbergh, Marc, Delarue
Přispěvatelé: Biochimie Structurale, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Medicinal Chemistry-FWW, Universiteit Gent = Ghent University (UGENT), Chimie Structurale des Macromolécules (CSM), Laboratory of Medicinal Chemistry, Rega Institute-Catholic University of Leuven, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Universiteit Gent = Ghent University [Belgium] (UGENT), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Zdroj: Journal of Biological Chemistry
Journal of Biological Chemistry, 2003, 278 (7), pp.4963-71. ⟨10.1074/jbc.M209630200⟩
Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2003, 278 (7), pp.4963-71. ⟨10.1074/jbc.M209630200⟩
ISSN: 0021-9258
1083-351X
Popis: The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excluding the TMP-bound Mg2+ ion. The crystallographic structure of the complex of one of the compounds, 5-CH2OH-dUMP, with TMPK has been determined at 2.0 Angstrom. It reveals a major conformation for the hydroxyl group in contact with a water molecule and a minor conformation pointing toward Ser(99). Looking for a role for Ser(99), we have identified an unusual catalytic triad, or a proton wire, made of strictly conserved residues (including Glu(6), Ser(99), Arg, and Asp(9)) that probably serves to protonate the transferred PO3 group. The crystallographic structure of the commercially available bisubstrate analogue P-1-(adenosine-5')-P-5-(thymidine-5')-pentaphosphate bound to TMPK is also reported at 2.45 Angstrom and reveals an alternative binding pocket for the adenine moiety of the molecule compared with what is observed either in the Escherichia coli or in the yeast enzyme structures. This alternative binding pocket opens a way for the design of a new family of specific inhibitors. ispartof: Journal of Biological Chemistry vol:278 issue:7 pages:4963-4971 ispartof: location:United States status: published
Databáze: OpenAIRE