Handling Metadata in a Neurophysiology Laboratory
Autor: | Zehl, Lyuba, Jaillet, Florent, Stoewer, Adrian, Grewe, Jan, Sobolev, Andrey, Wachtler, Thomas, Brochier, Thomas, Riehle, Alexa, Denker, Michael, Grün, Sonja |
---|---|
Přispěvatelé: | Riehle, Alexa, BLANC - CONTROLE CORTICAL DES MOUVEMENTS DE SAISIE MANUELLE : DU SINGE AU ROBOT - - GRASP2011 - ANR-11-BSV4-0026 - BLANC - VALID, Brain-inspired multiscale computation in neuromorphic hybrid systems - BRAINSCALES - - EC:FP7:ICT2011-01-01 - 2015-03-31 - 269921 - VALID, The Human Brain Project - HBP - - EC:FP7:ICT2013-10-01 - 2016-09-30 - 604102 - VALID, Institute for Neuroscience and Medicine (INM-6), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institut de Neurosciences de la Timone (INT), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'informatique Fondamentale de Marseille (LIF), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Department of Biology II, Ludwig-Maximilians-Universität München (LMU), Institute for Neurobiology, Eberhard Karls University Tuebingen, G-Node, Department Biology II, RIKEN Center for Brain Science [Wako] (RIKEN CBS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Helmholtz Portfolio 'Supercomputing and Modeling of the Human Brain' (SMHB), German Neuroinformatics Node (G-Node, BMBF Grant 01GQ1302), DFG SPP Priority Program 1665 (GR 1753/4-1 and DE 2175/1-1), Research Agreement CNRS-Riken, ANR-11-BSV4-0026,GRASP,CONTROLE CORTICAL DES MOUVEMENTS DE SAISIE MANUELLE : DU SINGE AU ROBOT(2011), European Project: 269921,EC:FP7:ICT,FP7-ICT-2009-6,BRAINSCALES(2011), European Project: 604102,EC:FP7:ICT,FP7-ICT-2013-FET-F,HBP(2013), Research Center Jülich, Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
analysis workflow
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology data sharing Biomedical Engineering Neuroscience (miscellaneous) [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology electrophysiology Computer Science Applications Methods odML metadata management ddc:610 reproducibility Neuroscience |
Zdroj: | Frontiers in neuroinformatics 10, 26 (2016). doi:10.3389/fninf.2016.00026 Frontiers in Neuroinformatics Frontiers in Neuroinformatics, 2016, 10, pp.26. ⟨10.3389/fninf.2016.00026⟩ Frontiers in Neuroinformatics, Frontiers, 2016, 10, pp.26. ⟨10.3389/fninf.2016.00026⟩ |
ISSN: | 1662-5196 |
DOI: | 10.3389/fninf.2016.00026 |
Popis: | International audience; To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. |
Databáze: | OpenAIRE |
Externí odkaz: |