The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex

Autor: Pakan, Janelle M P, Currie, Stephen P, Fischer, Lukas, Rochefort, Nathalie L
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Pakan, J M P, Currie, S P, Fischer, L & Rochefort, N L 2018, ' The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex ', Cell Reports, vol. 24, no. 10, pp. 2521-2528 . https://doi.org/10.1016/j.celrep.2018.08.010
Cell Reports, Vol 24, Iss 10, Pp 2521-2528 (2018)
Cell reports 24(10), 2521-2528 (2018). doi:10.1016/j.celrep.2018.08.010
DOI: 10.1016/j.celrep.2018.08.010
Popis: Summary: The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related inputs are integrated in order to encode behaviorally relevant locations in V1 neurons. Using a behavioral task in a virtual environment, we monitored layer 2/3 neuronal activity as mice learned to locate a reward along a linear corridor. With learning, a subset of neurons became responsive to the expected reward location. Without a visual cue to the reward location, both behavioral and neuronal responses relied on self-motion-derived estimations. However, when visual cues were available, both neuronal and behavioral responses were driven by visual information. Therefore, a population of V1 neurons encode behaviorally relevant spatial locations, based on either visual cues or on self-motion feedback when visual cues are absent. : Pakan et al. show that spatial locations that are relevant for a behavioral task are represented in the primary visual cortex. Both neuronal and behavioral responses to an expected reward location primarily rely on visual information. Without visual landmarks, both neuronal and behavioral responses are driven by self-motion derived information. Keywords: visual cortex, awake behaving mice, two-photon calcium imaging, virtual reality, reward, navigation, motor feedback, visual landmark, V1, path integration
Databáze: OpenAIRE