MRI-Based Computational Torso/Biventricular Multiscale Models to Investigate the Impact of Anatomical Variability on the ECG QRS Complex

Autor: Ana Mincholé, Ernesto Zacur, Rina Ariga, Vicente Grau, Blanca Rodriguez
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Frontiers in Physiology
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Zaguán: Repositorio Digital de la Universidad de Zaragoza
Universidad de Zaragoza
Frontiers in Physiology, Vol 10 (2019)
Popis: Aims:Patient-to-patient anatomical differences are an important source of variability in the electrocardiogram, and they may compromise the identification of pathological electrophysiological abnormalities. This study aims at quantifying the contribution of variability in ventricular and torso anatomies to differences in QRS complexes of the 12-lead ECG using computer simulations. Methods:A computational pipeline is presented that enables computer simulations using human torso/biventricular anatomically based electrophysiological models from clinically standard magnetic resonance imaging (MRI). The ventricular model includes membrane kinetics represented by the biophysically detailed O’Hara Rudy model modified for tissue heterogeneity and includes fiber orientation based on the Streeter rule. A population of 265 torso/biventricular models was generated by combining ventricular and torso anatomies obtained from clinically standard MRIs, augmented with a statistical shape model of the body. 12-lead ECGs were simulated on the 265 human torso/biventricular electrophysiology models, and QRS morphology,duration and amplitude were quantified in each ECG lead for each of the human torso-biventricular models. Results:QRS morphologies in limb leads are mainly determined by ventricular anatomy,while in the precordial leads, and especially V1 to V4, they are determined by heart position within the torso. Differences in ventricular orientation within the torso can explain morphological variability from monophasic to biphasic QRS complexes. QRS duration ismainly influenced by myocardial volume, while it is hardly affected by the torso anatomyor position. An average increase of 0.12±0.05 ms in QRS duration is obtained for eachcm3of myocardial volume across all the leads while it hardly changed due to changes in torso volume. Conclusion:Computer simulations using populations of human torso/biventricular models based on clinical MRI enable quantification of anatomical causes of variability in the QRS complex of the 12-lead ECG. The human models presented also pave theway toward their use as testbeds in silico clinical trials
Databáze: OpenAIRE