Popis: |
Background: Clinical studies have shown that hyperuricemia is associated with many cardiovascular diseases; however, the mechanisms involved remain unclear. In this study, we investigated the effect of uric acid on cardiomyocytes and the underlying mechanism. Methods and results: H9c2 cardiomyocytes were treated with various concentrations of uric acid. 3-Methyladenine (3-MA) or Compound C was added before treatment with uric acid. The expression of myocardial hypertrophy-related genes was measured using polymerase chain reaction (PCR). The cell surface area was calculated using ImageJ Software. Western blotting was used to measure the protein levels. Uric acid increased the gene expression of Nppa, Nppb, and Myh5, which are involved in myocardial hypertrophy, and the relative cell surface area of cardiomyocytes in a dose-dependent manner. Consistently, the ratio of LC3II/I, which is a biomarker of autophagy, increased dose-dependently, whereas the protein level of p62, a protein that is degraded by autophagy, decreased. 3-MA, an autophagy inhibitor, rescued uric acid-induced myocardial hypertrophy. Treatment with uric acid increased the level of phosphorylated adenosine monophosphate kinase (AMPK), as well as its downstream effector unc-51-like kinase (ULK1). Pharmacological inhibition of AMPK by Compound C attenuated the uric acid-induced activation of autophagy and myocardial hypertrophy. Conclusions: Uric acid induces myocardial hypertrophy by activating autophagy via the AMPK-ULK1 signaling pathway. Decreasing the serum uric acid level may therefore be clinically beneficial in alleviating cardiac hypertrophy. |