Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes

Autor: Philipp A, Lang, Stephanie, Kaiser, Swetlana, Myssina, Christina, Birka, Christof, Weinstock, Hinnak, Northoff, Thomas, Wieder, Florian, Lang, Stephan M, Huber
Rok vydání: 2004
Předmět:
Zdroj: Cellular microbiology. 6(4)
ISSN: 1462-5814
Popis: Haemolysin Kanagawa, a toxin from Vibrio parahaemolyticus, is known to trigger haemolysis. Flux studies indicated that haemolysin forms a cation channel. In the present study, channel properties were elucidated by patch clamp and functional significance of ion fluxes by fluorescence-activated cell sorting (FACS) analysis. Treatment of human erythrocytes with 1 U ml-1 haemolysin within minutes induces a non-selective cation permeability. Moreover, haemolysin activates clotrimazole-sensitive K+ channels, pointing to stimulation of Ca2+-sensitive Gardos channels. Haemolysin (1 U ml-1) leads within 5 min to slight cell shrinkage, which is reversed in Ca2+-free saline. Erythrocytes treated with haemolysin (0.1 U ml-1) do not undergo significant haemolysis within the first 60 min. Replacement of extracellular Na+ with NMDG+ leads to slight cell shrinkage, which is potentiated by 0.1 U ml-1 haemolysin. According to annexin binding, treatment of erythrocytes with 0.1 U ml-1 haemolysin leads within 30 min to breakdown of phosphatidylserine asymmetry of the cell membrane, a typical feature of erythrocyte apoptosis. The annexin binding is significantly blunted at increased extracellular K+ concentrations and by K+ channel blocker clotrimazole. In conclusion, haemolysin Kanagawa induces cation permeability and activates endogenous Gardos K+ channels. Consequences include breakdown of phosphatidylserine asymmetry, which depends at least partially on cellular loss of K+.
Databáze: OpenAIRE