Popis: |
Glucagon and glucagon-like peptides (GLPs) are coencoded in the vertebrate proglucagon gene. Large differences exist between fishes and other vertebrates in gene structure, peptide expression, peptide chemistry, and function of the hormones produced. Here we review selected aspects of glucagon and glucagon-like peptides in vertebrates with special focus on the contributions made by analysis of piscine systems. Our topics range from the history of discovery to gene structure and expression, through primary structures and regulation of plasma concentrations to physiological effects and message transduction. In fishes, the pancreas synthesizes glucagon and GLP-1, while the intestine may contribute oxyntomodulin, glucagon, GLP-1, and GLP-2. The pancreatic gene is short and lacks the sequence for GLP-2. GLP-1, which is produced exclusively in its biologically active form, is a potent metabolic hormone involved in regulation of liver glycogenolysis and gluconeogenesis. The responsiveness of isolated hepatocytes to glucagon is limited to high concentrations, while physiological concentrations of GLP-1 effectively regulate hepatic metabolism. Plasma concentrations of GLP-1 are higher than those of glucagon, and liver is identified as the major site of removal of both hormones from fish plasma. Ultimately, GLP-1 and glucagon exert effects on glucose metabolism that directly and indirectly oppose several key actions of insulin. Both glucagon and GLP-1 show very weak insulinotropic activity, if any, when tested on fish pancreas. Intracellular message transduction for glucagon, especially at slightly supraphysiological concentrations, involves cAMP and protein kinase A, while pathways for GLP are largely unknown and may involve a multitude of messengers, including cAMP. In spite of fundamental differences in GLP-1 function between fishes and mammals, fish GLP-1 is as powerful an insulinotropin for mammalian B-cells as mammalian GLP-1 is a metabolic hormone if tested on piscine liver. |