Comparative study of the spatial relationship between nicotinamide adenine dinucleotide phosphate-diaphorase activity, serotonin immunoreactivity, and GYIRFamide immunoreactivity and the musculature of the adult liver fluke, Fasciola hepatica (Digenea, fasciolidae)

Autor: M K, Gustafsson, N B, Terenina, N D, Kreshchenko, M, Reuter, A G, Maule, D W, Halton
Rok vydání: 2000
Předmět:
Zdroj: The Journal of comparative neurology. 429(1)
ISSN: 0021-9967
Popis: This is the first detailed description of the nitrergic nervous system in a fluke. In this study, the authors analysed the distribution of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in neuronal and nonneuronal tissues of the adult fluke Fasciola hepatica and compared this with the distribution of the musculature using tetramethylrhodamine isothiocyanate-phalloidin. To assess the correlation between the number of muscle cells in different parts of the fluke and the NADPH-d-stained cells, the nuclei were stained with Hoechst 333 42, which is specific for chromatin. The spatial relation between the NADPH-d-positive nerves and the 5-hydroxytryptamine (serotonin; 5-HT)-immunoreactive (-IR) and GYIRFamide-IR nervous elements was also examined. The methods complement each other. NADPH-d-positive staining occurs in both in neuronal tissue and nonneuronal tissue. Large, NADPH-d-stained neurones were localised in the nervous system. The oral and ventral suckers are innervated with many large NADPH-d-stained neurones. In addition, the NADPH-d staining reaction follows closely the muscle fibres in both the suckers, in the body, and in the ducts of the reproductive organs. The presence of NADPH-d activity along muscle fibres in F. hepatica and in other flatworms supports a possible myoinhibitory role for nitric oxide. Neuronal nitric oxide synthase in flatworms may form a novel drug target, which would facilitate the development of a novel anthelminthic.
Databáze: OpenAIRE