A water-soluble polylysine-retinaldehyde Schiff base. Stability in aqueous and nonaqueous environments

Autor: A R, Viguera, M J, Villa, F M, Goñi
Rok vydání: 1990
Předmět:
Zdroj: The Journal of biological chemistry. 265(5)
ISSN: 0021-9258
Popis: In order to improve the existing models of retinal-protein Schiff bases, a water-soluble polylysine-retinaldehyde imine has been synthesized and its stability assessed under a variety of conditions through changes in the visible absorption spectrum. The compound absorbs at 342 nm and consists of a 90-kDa poly-L-lysine containing a retinal Schiff base in about 2% of the lysyl epsilon-amino ends. Retinal is mostly in the all-trans form; under no conditions is more than 15% of the 13-cis isomer detected. The absorption maximum exhibits a pH-dependent reversible shift to 402 nm, with an apparent pKa approximately 3.4. In the presence of the anionic surfactant sodium dodecyl sulfate, this pKa is shifted to approximately 8.9, probably because of electric neutralization of lysyl epsilon-amino groups. Other detergents (cetyltrimethylammonium bromide, Triton X-100) do not modify the Schiff base pKa, but rather promote its hydrolysis; in this case detergents act in the same way as certain solvent mixtures, by providing an amphiphillic environment to the imine that in turn stabilizes the products of hydrolysis. Our results suggest that once the surfactant reaches the Schiff base, preferential partition of retinal into detergent micelles is the main factor facilitating imine bond breakdown. The response of our synthetic Schiff base to changes in pH or solvent polarity point together to an important role of the supporting polypeptide in providing a suitable environment to the chromophore.
Databáze: OpenAIRE