Popis: |
Global hypoxia preconditioning provides neuroprotection against a subsequent, normally damaging challenge. While the mechanistic pathways are unknown, changes in the expression of stress-related proteins are implicated. Hypoxia preconditioning attenuates the brain edema and neuropathology associated with kainic acid-induced status epilepticus in a protein synthesis-dependent manner when a kainic acid challenge is given up to one week post-preconditioning. Kainic acid initiates a glutamate-driven status epilepticus causing a Ca2+ and oxidative stress, resulting in injury to the piriform cortex and hippocampus. Stress-related gene expression [e.g. metallothioneins (MTs), heme oxygenase-1 (HO-1)] is enhanced during seizures in vulnerable brain areas, (e.g. piriform cortex). This study explores the effects of hypoxia preconditioning on expression of MT-1, MT-2 and HO-1 before and after kainic acid-induced seizures. Analysis of MT-1, MT-2 and HO-1 expression, through Western and Northern blotting, indicates that there is a variable pattern of induction and suppression of these two genes following hypoxia preconditioning alone as well as after kainic acid-induced seizures compared to non-preconditioned animals. These findings suggest that hypoxia preconditioning induces an adaptive response that prevents kainic acid seizure-associated neuropathology even when robust seizures occur. This may involve a variety of stress-related proteins, working in concert, each with their own individual expression profiles. Induction of this type of neuroprotection pharmacologically, or through preconditioning, will provide a better understanding of the stress response in brain. |